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The problem of transforming a linear dynamical system in the neighbourhood of a state of equilibrium 

[l, 21 is solved using the special problem of the damping of the system by controls of minimum intensity 

after a finite time interval. The possibility of using other problems of optimal control is discussed. The 

main attention is devoted to constructing algorithms of the operation of a device (a stabilizer) which is 

able, in real time, to generate a stabilizing control circulating in the closed optimal system when 

unknown perturbations operate constantly [3, 41. The proposed method is based on the constructive 

theory of optimal control [5, 61. Another form of this theory for solving the problem of stabilization is 

presented in [7] (see also [S]). 

1. STATEMENT OF THE PROBLEM 

LETTHE behaviour of a dynamical system be described by the equation 

.k.=Ax, XER” (1.1) 

We will assume that the behaviour of the dynamical system under the action of a control is 
described by the equation 

i=Ax+bbu, ta0 (1.2) 

The classic statement of the problem of stabilization is given in [l]. Let us examine this 
problem from a somewhat different standpoint. We specify the finite time interval of 
programmed damping 8, 0 < 8 c +oo, and the accuracy of damping E > 0. We shall control the 
dynamical system (1.2) by means of piecewise-continuous functions u(t), t 3 0. 

Definition 1. The dynamical system (1.2) is called dampened from the state x0 if a permissible 
control u(e) = (u(t), t 2 0) exists which generates a trajectory x(t) = x(t, x0, u(e)) of the system 
such that the conditions 

are satisfied. 

lxi(0)l~e, iEZ={1,2 ,..., n] (1.3) 

Definition 2. The system is called dampened if property (1.3) is satisfied for each initial state 
x0 E W” of the system (1.2). 
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It is obvious that for system (1.1) to be dampened for all sufficiently small E > 0, it is 
necessary and sufficient that system (1.2) is completely controllable in the Kalman sense. 

We will estimate the performance of the damping control u(t), t 2 0 by the magnitude of the 
functional 

cl(u) = ,z=& I u(r) I (1.4) 

Definition 3. The damping control u’(t), t a 0 is said to be program-optimal if the perform- 
ance criterion (1.4) has the minimum value 

p(uO) = minp(u) (1.5) 

for it. 
The above concepts are not beyond the scope of the classical theory of controllability. To 

construct the program-optimal control a method based on the solution of the problem of 
moments is known [2]. The method developed in [3] for solving problem (1.2)-(1.5) is used 
below. 

The construction of program-optimal controls is only one aspect (and not the most important 
one for applications) of the problem of the optimal stabilization of dynamical systems. For the 
practical stabilization of control systems the problem of constructing feedback-type positional 
optimal controls is considerably more difficult and important. The aim of our further 
discussion is to describe an algorithm of the operation of a device which solves the problem of 
optimal stabilization when generating feedback-type optimal controls in problem (1.2)-(1.5). 
We will first introduce some necessary definitions. 

We imbed problem (1.2)-(1.5) in the family of problems 

max I u(t)1 + min 
OGV@ 

(l-6) 

which depend on the n-vector z. We denote the program solution of (1.6) by u”(t I z), x”(t I z), 
t E [O, 01. 

Definition 4. The family of piecewise-continuous functions (u”(t I z), t E T, = [0, 01, z E R) is 
called feedback-type optimal control in problem (1.2)-(1.5). 

We will call the function u(t I x(t,)), t, s t =s tk+l, t, = l&l, k = 0, 1, . . . , the program-positional 
control. 

As we know, it is usual to call the function u(t Ix(&)), t ET the positional control. 
We mean by the motion of the closed system the solution x(t), t L 0, of the equation 

i=Ax+bbuO(th-(tk)), rkctsrk+l 

tk=ke, x(0)=x0, k=0,1,2 ,... (1.7) 

By the definition of the optimal feedback, the closed system (1.7) is asymptotically stable 

Equation (1.7) describes the behaviour of the dynamical system closed by feedback under 
ideal conditions. In this case the problem of optimal stabilization is reduced to solving a 
denumerable set of the program problems (1.6). The last problems may be solved in succession 
by preparing the solution in each current interval Tk =‘[tk, t,,,] for the next interval T,,,. If 
powerful computers are available and sufficiently large magnitudes of 0 this approach can be 
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realized. In practice, however, the closed system will constantly be subjected to the action of 
unknown perturbations. 

Suppose that its actual motion is described by the equation 

~=~+bbuO(tlx(t,))+w(t), x(0)=x0 

teT,, k =0,1,2,... (13) 

where w(f), t 2 0, is an unknown piecewise-continuous function. 
Let the perturbation w*(t), t b 0, be realized in a certain particular process of operation of 

the dynamical system. It will generate the trajectory x*(t), t 2 0, of EZq. (1.8). The control which 
will then circulate in the closed system has the form 

u*(t) =u’(t\ x*(1,)), t E Tk, k =0,1,2,... 

Now it is impossible to know in advance which of the states x * (tk), k = 1,2, . . . , are realized, 
and hence, in the context of the approach mentioned, it is necessary to prepare the family 
(u”(t I z), t E To) for all possible vectors z E R” in advance. It is obvious that this problem is not 
simpler than the classical problem of synthesizing the optimal feedback, which has not yet been 
solved. 

Definition 5. A device which is able to generate the control u*(t), t 3 0, in real time for each 
specific process of operation of the dynamical system is called the optimal stabilizer (OS) of the 
dynamical system (1 .l). 

The algorithm of the operation of the OS will be described in Section 3. For the moment we 
will consider some necessary additional information. 

2. THE GOVERNING EQUATIONS OF THE OPTIMAL STABILIZER 

Consider the problem 

i=Ax+bu, x(O) = z; 1 u(t)/ C PL, t E T, (2.1) 

together with problem (1.6). 
It is obvious that the minimum number u = u(z) satisfying the equation a( z, cl(z)) = E is the 

optimal magnitude of the performance criterion of problem (1.7). The criterion of optimality for 
problem (2.1) can be obtained following [3]. By this criterion the optimal control z&t) = ui(t I z), 
t E T, has the form 

u:(t) = u(z)signAt(t) 

A,(t)=Ap(tlz)=y;(t)b=-j’(z)F(B-t)b 

y(z) E R”, _Yi(Z)=O, iE Iff(Z), I,(Z)=1 \ I(Z) 

Z(z)={iEI:Ixi(0)I=O((Z,CL)), p=AF, F(O)=E 

where A,,(t) is the optimal vector of potentials. 
Hence the optimal control g(t), t E T, is specified by the quantity p(z), the set l(z) and 

lj(Z), j E P = {I,...,pl; Y(Z) P-2) 
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which consists of zeros t,(z) c . . . c t,(z), the cocontrol A,,(f), t E T and the vector of potentials. 
The elements (2.2) satisfy the system of equations 

f&.+P;z)=O, kEZ(Z) 

q,($,jEP;y)=O, fE P 
(2.3) 

c 
Xi(9)=U(iP). id(z) 

Y; - Xi(O)=-Clzp), ie/(z) yi = ’ 
Here 

_fk(rj,jE RZl= j$or~(e~F(B-f)bdtkj +e;F(0)z-a(z,CL)signyt, k E Z(z) 
J 

qr(tj,jE P;y)=-y’F(O-t,)b, 1E P 

to = 0, $+I ~8, kj =.l.t(z)signA,(tj +0) 

e; =(O ,..., 0,l.O ,..., 0) 

We call the system of equations (2.3) the governing equations of the OS 
Assume that the quantities z and 8 are such that the relations 

‘rank{eiF(O-tj)b, j=1,2,...,p; keZ(z)}3II(z)I-l 

hold. 
The Jacobi matrix of the system has the form 

G(fi,i E ‘;y)= 

2e;F(8 - ti)bki_, 

0 

i E P;k E l(z) 

diag(-y’F(B - ti)Ab -e;F(B - ti)b 

iEP ie P,keI(z) 

sign yk , 

0 

k E Z(z) 

-sign yk 

k E I(z 

This matrix is non-degenerate under sufficiently general assumptions. 
The numerical method of solving the governing equations in real time is analogous to the 

method [6] of solving the governing equations for the problem of synthesis. We shall indicate 
the necessary additions. 

Suppose the stabilizer has transferred the object from the state z to the state z+ AZ. To 
construct the set Z(z + AZ) when solving the governing equations we follow the values of y(z). If 
y,(z) = 0, i E Z(z), we put Z(z+ Az)= Z(z)\(i). In addition, we monitor the behaviour of the pas- 
sive output signals x,(e), i E Z \ Z(z). If I x,(e) I= a(z, p), i E Z \ Z(z), we put Z(z + Az) = Z(z) u {i). 

To calculate l.t(z + Az) we use the parameters E, and E, (0 < E, < E, -c E) 

IWA < akW>) < e2 

P(z + kz) = Mz> - WzN,a(z,p(z)) c q 

cl(z) + W(zN,a(z,cL(z)) > c2 
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By the choice of 6(cr(z)) > 0 we satisfy the inequality 

3. THE ALGORITHM OF THE OPERATION OF THE OPTIMAL STABILIZER 

At the initial instant z = 0 the OS generates the control 

U*(t)=U”(tlXo), tETo 

lu”(tlxo)l=p(~o), reTo 

where u”(t I x0) is the optimal programmed control of problem (1.2)-(1.5) calculated before 
connecting the OS. This control is found by the finite methods of [3]. It is applied to the input of 
the system (1.2) during the time interval 5 = [0, 01. 

Let T be the current time and k(r) be the number of the segment Tk which contains this 
instant: k(~)8 < k(z + 1)0, z E Tke,. We will denote the state in which the stabilized system existed 
at the instant z under the action of the control u*(r), r E[O, T] generated by the OS and of the 
realized perturbation w*(t), r E [0, T[ by X*(T). 

We will specify the rule by which the OS chooses the controls as follows: 

u’(2)=u”(C-k(2)01x*(rk(,))), z 2 0 

Here ( u”(r Ix * (r,&), r E To is the optimal programmed control constructed as a result of the 
numerical solution of the governing equation (2.3) in real time. 

When operating in this way the OS will generate piecewise-continuous control in real time in 
each specific mode of operation of the system. 

4. MODIFICATIONS 

One of the merits of the OS described in Sections 2 and 3 is the fact that it can operate when 
there are large deviations of systems from the position of equilibrium. But the magnitudes of the 
controls may turn out to be large. If the deviations are small it is possible to use OSs which 
generate controls satisfying the given restrictions. The natural problem of optimal control, for 
which such a damper can be constructed, has the form 

II u(r)1 dr + min, i==++bu, x(O)=z 

;Xi(O)] G EV i=1,2 ,..., n; lu(r)lGl, re[O,O] 

The necessary modifications which must be introduced into the constructions of Sections l-3 
may be obtained as in [6]. 

The second possible modification of the OS described in Section 3 involves ensuring the 
property of complete damping of the system x(r)= 0 a finite time after the action of the 
perturbations has ceased. 

This can be obtained as follows. We specify the bound U* for admissible values of the control. 
Once the action of the perturbations has terminated after a finite time at the output of the 
optimal damper (Section 2) the control u*(T*), satisfying the equality u * (T*) = u*, will appear. 
Beginning at the instant T*, when solving the governing equations, we fix the number l.r(z*) but 
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make the parameter Cl variable, finding its current magnitude e(z) from the governing equations 
(2.3). 

5. ROBUSTNESS 

One of the requirements imposed on stabilizers is their ability to function when variations of the 

parameters of the system being stabilized are not monitored. In other words, the stabilizer, calculated using 

the model X = Ax, may deal with the model 

i=.& (5.1) 

under practical conditions, where the matrix x differs in some sense only slightly from the matrix A. 

Leaving aside problems of adaptive control and the problems of identifying the matrix x, let us examine 

the possibility of applying the above results to the problem of robust stabilization. 

To do this we write the equation of real motion 

i=&+h+W’(t) 

in the form 

and we consider the function 

w,(f)=w(r)+(~-A)x(t), r,O 

to be the new perturbation. The dynamical system (1.8) examined above is obtained. 

The results of the operation of the OS constructed in Section 3 are shown in Fig. 1 for the system 

X+x=u, x(0)=2, i(O)=1.6, 8=4 (5.2) 

when, in practice, the equations of motion of the object with the altered parameters has the form j; + 1.1 = u 

(the solid curve) and j;+O.9 = u (the dashed curve). 

I I 

-I 0 I 2 x 

FIN . 1. 
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6. EXAMPLES 

We will illustrate the operation of the OSs constructed in the problem of the stabilization of a linearized 

mathematical pendulum at the lower stable and upper unstable positions of equilibrium. When stabilizing 

the stable position of equilibrium the mathematical model of the dynamical system has the form (5.2). 
The following values of the parameters were taken: x(O) = 2, X(O) = 1.6, 0 = 4, w * (t) = OSsin2t. 
The states (xl(t) = x(t) and x*(t) = .;(t)) of the system closed by feedback, described in Section 3 

(programmed-positional control), are given below (rows (a)) 

‘l 

0 0.8 1.6 2.4 3.2 4.0 4.8 

(a) 2.325 1.798 0.85 1 -0,167 -0.453 -0,304 

x2 

:‘i 

. -0.395 -0.926 -1.379 -0.952 -0.070 0,335 

@I ;; :‘i 2.285 1.404 0.093 -1.132 -1.265 -0.468 

-0.794 -1.400 -1.777 -1,033 0.634 1.182 

Since, according to the algorithm of Sections 2 and 3, when this feedback is constructed, data for the 

feedback u”(t I x*(t)) are calculated continuously, the states of the system when using positional control 
closed by the latter feedback are also given (rows (b)). These data show that feedback of the second type 
provides a sufficiently monotone decrease of the distance from the current state of the system to the state of 
equilibrium. Because of this, only positional control was used in the following tests. 

Graphs of the change in the optimal intensity p(t), t L 0, during the stabilization are shown in Fig. 2 for 

the cases when there are no perturbations (the solid curve) and for the cases with the specified perturbation 
(the dashed curve). 

The corresponding phase trajectories are shown in Fig. 3. 
When stabilizing the upper unstable position of equilibrium of the pendulum the mathematical model of 

the system takes the form [l] X-x = u. 
The following magnitudes of the parameters were chosen when the constructed OS was used: x(O) = 1.2, 

X(O) = 1, 8 = 2, w*(t) = OSsin2t. The phase trajectories are shown with the above notation in Fig. 4. 

F10.2 
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